5 research outputs found

    AuxChannel: Enabling Efficient Bi-Directional Channel for Scriptless Blockchains

    Get PDF
    Payment channels have been a promising solution to blockchain scalability. While payment channels for script-empowered blockchains (such as Bitcoin and Ethereum) have been well studied, developing payment channels for scriptless blockchains (such as Monero) is considered challenging. In particular, enabling bidirectional payment on scriptless blockchains remains an open challenge. This work closes this gap by providing AuxChannel, the first bi-directional payment channel protocol for scriptless blockchains, meaning that building payment channels only requires the support of verifiably encrypted signature (aka adaptor signature) on the underlying blockchain. AuxChannel leverages verifiably encrypted signature to create a commitment for each off-chain payment and deploys a verifiable decentralised key escrow service to resolve dispute. To enable efficient construction of AuxChannel, we introduce a new cryptographic primitive, named Consecutive Verifiably Encrypted Signature (CVES), as a core building block and it can also be of independent interest for other applications. We provide and implement a provably secure instantiation on Schnorr-based CVES. We also provide a formal security analysis on the security of the proposed AuxChannel

    BlindHub: Bitcoin-Compatible Privacy-Preserving Payment Channel Hubs Supporting Variable Amounts

    Get PDF
    Payment Channel Hub (PCH) is a promising solution to the scalability issue of first-generation blockchains or cryptocurrencies such as Bitcoin. It supports off-chain payments between a sender and a receiver through an intermediary (called the tumbler). Relationship anonymity and value privacy are desirable features of privacy-preserving PCHs, which prevent the tumbler from identifying the sender and receiver pairs as well as the payment amounts. To our knowledge, all existing Bitcoin-compatible PCH constructions that guarantee relationship anonymity allow only a (predefined) fixed payment amount. Thus, to achieve payments with different amounts, they would require either multiple PCH systems or running one PCH system multiple times. Neither of these solutions would be deemed practical. In this paper, we propose the first Bitcoin-compatible PCH that achieves relationship anonymity and supports variable amounts for payment. To achieve this, we have several layers of technical constructions, each of which could be of independent interest to the community. First, we propose BlindChannel\textit{BlindChannel}, a novel bi-directional payment channel protocol for privacy-preserving payments, where {one of the channel parties} is unable to see the channel balances. Then, we further propose BlindHub\textit{BlindHub}, a three-party (sender, tumbler, receiver) protocol for private conditional payments, where the tumbler pays to the receiver only if the sender pays to the tumbler. The appealing additional feature of BlindHub is that the tumbler cannot link the sender and the receiver while supporting a variable payment amount. To construct BlindHub, we also introduce two new cryptographic primitives as building blocks, namely Blind Adaptor Signature\textit{Blind Adaptor Signature}(BAS), and Flexible Blind Conditional Signature\textit{Flexible Blind Conditional Signature}. BAS is an adaptor signature protocol built on top of a blind signature scheme. Flexible Blind Conditional Signature is a new cryptographic notion enabling us to provide an atomic and privacy-preserving PCH. Lastly, we instantiate both BlindChannel and BlindHub protocols and present implementation results to show their practicality

    Calmodulin and Its Interactive Proteins Participate in Regulating the Explosive Growth of <i>Alexandrium pacificum </i>(Dinoflagellate)

    No full text
    Alexandrium pacificum is a typical dinoflagellate that can cause harmful algal blooms, resulting in negative impacts on ecology and human health. The calcium (Ca2+) signal transduction pathway plays an important role in cell proliferation. Calmodulin (CaM) and CaM-related proteins are the main cellular Ca2+ sensors, and can act as an intermediate in the Ca2+ signal transduction pathway. In this study, the proteins that interacted with CaM of A. pacificum were screened by two-dimensional electrophoresis analysis and far western blots under different growth conditions including lag phase and high phosphorus and manganese induced log phase (HPM). The interactive proteins were then identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Four proteins were identified, including Ca2+/CaM-dependent protein kinase, serine/threonine kinase, annexin, and inositol-3-phosphate synthase, which all showed high expression levels under HPM. The gene expression levels encoding these four proteins were also up-regulated under HPM, as revealed by quantitative polymerase chain reaction, suggesting that the identified proteins participate in the Ca2+ transport channel and cell cycle regulation to promote cell division. A network of proteins interacting with CaM and their target proteins involved in the regulation of cell proliferation was raised, which provided new insights into the mechanisms behind the explosive growth of A. pacificum

    Table_1_First insight into H3K4me3 modification in the rapid growth of Alexandrium pacificum (dinoflagellates).docx

    No full text
    BackgroundAlexandrium pacificum is a dinoflagellate species notorious for its rapid growth resulting in large-scale blooms. This study aimed to investigate the molecular mechanisms of A. pacificum under laboratory-simulated rapid growth conditions from the perspective of H3K4me3 modification regulation.Methods and resultsWestern blot was used to detect the modification abundance of H3K4me3 in A. pacificum cultured under different conditions, including high light (HL), high nitrogen (HN), and f/2 medium (control, CT), in the rapid growth exponential phase. The results showed that the modification abundance of H3K4me3 under HL or HN was greater than that under CT. Chromatin immunoprecipitation-sequencing was used to explore the acting genes of H3K4me3 under different conditions for the first time. Nitrogen metabolism and endocytosis were significantly associated with H3K4me3 regulation under HL. Furthermore, H3K4me3 was also significantly associated with the vitamin metabolism pathway under HN.ConclusionsThese findings demonstrate that H3K4me3 plays a potentially important role in the regulation of the rapid growth of A. pacificum. Such knowledge of a histone modification regulatory network in this dinoflagellate, lays a necessary foundation for future research in related fields.</p

    Table_2_First insight into H3K4me3 modification in the rapid growth of Alexandrium pacificum (dinoflagellates).docx

    No full text
    BackgroundAlexandrium pacificum is a dinoflagellate species notorious for its rapid growth resulting in large-scale blooms. This study aimed to investigate the molecular mechanisms of A. pacificum under laboratory-simulated rapid growth conditions from the perspective of H3K4me3 modification regulation.Methods and resultsWestern blot was used to detect the modification abundance of H3K4me3 in A. pacificum cultured under different conditions, including high light (HL), high nitrogen (HN), and f/2 medium (control, CT), in the rapid growth exponential phase. The results showed that the modification abundance of H3K4me3 under HL or HN was greater than that under CT. Chromatin immunoprecipitation-sequencing was used to explore the acting genes of H3K4me3 under different conditions for the first time. Nitrogen metabolism and endocytosis were significantly associated with H3K4me3 regulation under HL. Furthermore, H3K4me3 was also significantly associated with the vitamin metabolism pathway under HN.ConclusionsThese findings demonstrate that H3K4me3 plays a potentially important role in the regulation of the rapid growth of A. pacificum. Such knowledge of a histone modification regulatory network in this dinoflagellate, lays a necessary foundation for future research in related fields.</p
    corecore